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A Monte Carlo (MC) algorithm is presented for the simulation of the time evolution
of aggregation processes featuring multiple components, properties, or conservation
laws. Instead of using deterministic differential population balance equations, the
MC algorithm utilizes a stochastic approach to aggregation kinetics. As a result,
exact simulation of spatially independent aggregation processes is possible without
the need for numerical approximations. Furthermore, simulations exactly predict all
moments of the size and composition distributions of aggregating particles for both
nongelling and gelling kernels and extend these results to the postgelation period.
The algorithm is shown to require at most O((�1�2 . . . �κ)

1/(κ+1)) rate-limiting oper-
ations per time step for a κ-component aggregation process featuring �i monomers
of each component i—a substantial performance improvement over the potential of
previous methods. Simulation results are presented for bivariate sum, product, and
constant kernels, and for the perikinetic (Brownian) kernel. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

The process of aggregation is ubiquitous in nature and underlies many scientific, medi-
cal, and industrial research areas and applications. Often, aggregating particles are not
isotropic in composition but are composed of several components. Examples of such het-
erotypic processes include copolymerization and the coagulation of blood, where many
types of chemical monomers or cells polymerize or aggregate according to their respec-
tive affinities for each other. In such processes, knowledge of both the size and compo-
sition of aggregating particles is often critical to the successful prediction of their time
evolution. For example, blood coagulation is strongly dependent on both the relative and
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absolute concentrations of leukocytes and platelets, on soluble fibrinogen, and on other blood
components.

The kinetics of spatially homogeneous multicomponent aggregation processes are usually
described by population balance equations (PBEs) such as

∂c(m, n; t)

∂t
= 1

2

m∑
m ′=0

n∑
n′=0

K (m − m ′, n − n′ | m ′, n′)c(m − m ′, n − n′; t)c(m ′, n′; t)

− c(m, n; t)
∞∑

m ′=0

∞∑
n′=0

K (m, n | m ′, n′)c(m ′, n′; t), (1)

which have enjoyed vast success in their ability to predict the time evolution of the size
distributions of aggregating particles. Originally derived from chemical considerations
[25], PBEs give a deterministic description of the kinetics of a system of “polymeriza-
tion reactions.” Hence, Eq. (1) may be interpreted as a differential population balance
for a two-component “copolymerization” where c(m, n; t) is the expected concentration
of m, n-mers and the kernels K (k, 
 | m, n) are chemical rate constants for the reaction
AkB
 + AmBn → Ak+mB
+n . Although Eq. (1) describes discrete aggregation processes, it
can be expanded in scope to describe aggregation processes featuring particles with arbitrary
sizes to give Lushnikov’s equation [16],

∂ ĉ(u, v; t)

∂t
= 1

2

u∫
0

v∫
0

K (u, v | u − u′, v − v′)ĉ(u′, v′; t)ĉ(u − u′, v − v′; t) dv′ du′

− ĉ(u, v; t)

∞∫
0

∞∫
0

K (u, v | u′, v′)ĉ(u′, v′, t) dv′ du′, (2)

where ĉ(u, v; t) du dv is the expected concentration of particles in the composition range
{[u, u + du), [v, v + dv)}. Defining a cumulative particle composition distribution

G(u, v; t) =
u∫

0

v∫
0

ĉ(u, v; t) dv du, (3)

the expected concentration of particles on the component intervals [u, u′] and [v, v′] is
given by

c([u, u′], [v, v′]; t) = G(u′, v′; t) − G(u, v; t). (4)

Although written as single equations, PBEs such as Eqs. (1) and (2) represent potentially
infinite sets of highly coupled nonlinear differential equations. As a result of this mathe-
matical complexity, analytical solutions of multicomponent PBEs are known for only a few
simple kernels [4, 12, 16]. This has been a cause for concern in transport-limited aggrega-
tion and copolymerization, where the kernels governing these real physical processes do
not permit analytical solutions to their PBEs.

We have been careful to note that Eqs. (1) and (2) are deterministic equations for the
description of the expected values of the concentrations of particle species. That is, they
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describe the kinetics of aggregation processes in the thermodynamic limit and provide no
information regarding their innate fluctuations. Although such equations are accurate for
the description of systems with large numbers of particles, they cease to be accurate in the
limit of complete aggregation, where the assumptions underlying deterministic treatment
of kinetics become unrealistic as the particle populations become small [5, 20].

As with small systems of chemical reactants, these obstacles can be overcome by a
probabilistic representation of the process [22]. In contrast to the deterministic approach,
the stochastic approach to aggregation kinetics describes the time evolution of the process
in terms of a stochastic master equation. In contrast to PBEs that specify the concentration
of m, n-mers, a master equation specifies the probability P(x, t | x0, 0) that the system is
in the state x at some time t , given that it was in some other state x0 at t = 0. In a two-
component process as previously described, the state x = {Xm,n} is defined by a unique set
of populations of all types of m, n-mers. The stochastic approach to aggregation kinetics
is extremely robust, possessing the ability to describe the kinetics of aggregation processes
in both the large and small population limits of aggregation processes [2, 5, 6, 9, 17, 20,
21]. Unfortunately, despite solutions of master equations for a few special cases of single-
component aggregation processes [2, 9, 17, 27], there is no general solution method for
master equations for multicomponent systems with arbitrary kernels. This motivates the
present study.

The stochastic approach to aggregation kinetics has reemerged as an attractive alternative
to the PBEs in recent years as a basis of Monte Carlo (MC) simulation [15, 24, 30]. In this
context, the stochastic approach may be employed to determine both the expectation values
and its fluctuations for multicomponent aggregation processes. In this work, we describe an
exact and efficient MC algorithm for the simulation of the time evolution of any spatially
homogeneous aggregation process with any number of components, or conservation laws.
In addition, we demonstrate the ability of the algorithm to predict the dynamics of gelling
systems in their postgelation phase, where the physics is dominated by the stochastic nature
of small populations.

2. STOCHASTIC APPROACH TO AGGREGATION KINETICS

Instead of concerning itself with the solution of master equations, the MC realization
of the stochastic approach focuses on the transitions to and from the potential states of
the aggregating system, characterizing the process as a Markov chain. Consequently, the
implementation of the approach strongly depends on the definition of the states of the system.
One choice is to define the state of the system in terms of the individual particles. In this
framework, the state of a κ-component system is defined by a set of particles i ∈ [1, N ] with
properties or compositions ui = (u1,i , u2,i , . . . uκ,i ). Here, uk,i need not solely represent the
amount of “component” k in species i . Rather, it may represent any number of properties,
such as kinetic energy, momentum, or surface area.

The Markov chain is defined by the transition probabilities connecting each potential
state of the system. Here, the stoichiometry of aggregation serves a key role. As states
can only change by one aggregation event at a time, the transition probabilities between
most states are zero. That is, because only three particles (two “reactants” and a “product”)
are involved in aggregation events, many events are required to transform most states to
most other states. Thus, the only nonzero transition probabilities from any state are the
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probabilities of aggregation between pairs of particles, resulting in a very sparse transition
matrix. Therefore, these transition probabilities may be defined as

Pr{a specific pair of particles i and j will aggregate in the next time interval δt}
= C(ui , u j )δt + O(δt). (5)

Using the probabilistic description of the aggregation process conferred by Eq. (5),
Gillespie [6] developed particle-based MC simulation algorithms that serve as the bases
of most other implementations of the stochastic approach [24, 26]. In these algorithms, a
single state is stored in the computer memory and evolved probabilistically according to
a “coalescence probability density function” P(τ, i, j) dτ for the imminently aggregating
particles (i ∈ [1, N − 1] and j ∈ [i + 1, N ]) and the quiescence time τ preceding their
aggregation. Because this density function P(τ, i, j) may be derived from Eq. (5) with-
out approximation, the results of stochastic simulations based upon it are both exact and
complete. Moreover, quantitative information regarding both the mean behavior and fluctu-
ations of the aggregation process can be obtained from the results of multiple simulations.
Unfortunately, these particle accounting algorithms can be computationally demanding.
For instance, a system of N particles requires storage for N (N + 1)/2 transition proba-
bilities given by Eq. (5) and requires at least O(N ) numerical operations per aggregation
event. Therefore, computational storage and speed strongly limit the applicability of these
algorithms to simulations with large numbers of particles.

These numerical difficulties may be curtailed significantly by adopting a different def-
inition of the state of the system. The optimal choice follows from a chemical paradigm,
whereby the state of the system is described in terms of the populations of aggregate species.
As Eq. (1) defines a state by a set of species characterized as aggregates of {m, n} ∈ N

2

monomers with concentrations c(m, n; t) ∈ R, and Eq. (2) defines a state as a unique value
of G(u, v; t) ∈ R for every {u, v} ∈ R

2, we define states as ensembles of species µ ∈ [1, M]
defined by unique properties or compositions uµ = (u1,µ, u2,µ, . . . uκ,µ) with populations
Xµ ∈ N. For example, in a single-component discrete aggregation process initially contain-
ing 1000 monomers in some volume V , one state may be characterized by 1000 1-mers,
another by 900 1-mers and 50 2-mers, and so forth. This definition expands on a mathemat-
ically similar concept developed by Spouge [26] for reducing the memory requirements of
Gillespie’s algorithm, although he did not expound the chemical context.

In addition to simplifying the accounting necessary for the state space, the “chemically”
defined state space naturally lends itself to analysis by the stochastic approach to chemical
kinetics [22]. In this context, the probabilities of “aggregation reactions” between species
may be exactly defined as

Pr{a specific pair of particles of species µ and ν will aggregate in the next time interval δt}
= C(uµ, uν)δt + O(δt). (6)

The similarity of Eqs. (5) and (6) is no coincidence, as both probabilities pertain to the
interaction of individual particles. However, the definition of the species-based state vec-
tor requires that the transition probabilities consider the number of ways two particles of
species µ and ν may aggregate. Hence, the transition probabilities for a species-based state
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space are

a(µ, ν) dt = C(uµ, uν)Xµ Xν dt

= Pr{any two particles of unlike species µ and ν with

populations Xµ and Xν will aggregate in the next dt} (7)

and

a(µ, µ) dt = C(uµ, uµ)

(
Xµ

2

)
dt

= Pr{any two particles of same species µ with

populations Xµ will aggregate in the next dt}. (8)

As the microphysics of an aggregation process are inbued in the PBE via the rate kernels,
the quantities C(uµ, uν) clearly possess the same role in the stochastic approach. As it
turns out, because PBEs such as Eqs. (1) and (2) may be derived from both stochastic
considerations of particle collision [5, 21] and by consideration of stoichiometry in the
derivation of chemical rate expressions for polymerizing systems [15], these rate kernels
and probability densities for aggregation events are related by [5, 7]

C(uµ, uν) ≡ K (uµ, uν)

V
. (9)

Equation (9) may be interpreted in the context of PBEs as follows: if species µ is defined
by the composition uµ = (u, v) and species ν by uν = (u′, v′), then K (uµ, uν) = K (u, v |
u′, v′), as in Eq. (2). Because the mathematical forms of rate kernels K (uµ, uν) derive from
the laws of chemical kinetics and transport phenomena [3, 29], the stochastic approach
to aggregation kinetics has a rigorous microphysical basis in addition to its theoretical
completeness. Moreover, Eqs. (5)–(8) accomodate any kernel, including those explicitly
dependent on time.

Using these transition probabilities, a general “aggregation probability density function”
P(µ, ν; τ) dτ may be defined, akin to the aforementioned “coalescence probability density
function” utilized by Gillespie’s particle-based methods. We define this quantity as

P(µ, ν; τ) dτ = Pr{two particles of species µ and ν will aggregate

after an interval of quiescence τ }
= P0(t + τ | t)a(µ, ν) dτ. (10)

Because a(µ, ν) are known from the current state, it remains to determine P0(t + τ | t), the
probability distribution density for the imminent quiescence time. To calculate this quantity,
consider a system in some state x = {X1, X2, . . . X M}, at time t . According to Eqs. (7) and
(8), the probability P0(t + δτ | t) that the system remains in the state x during the small
time interval [t, t + δτ) is exactly

P0(t + δτ | t) = P0(t + 0 | t)

(
1 −

M∑
µ=1

αµδτ + O(δτ )

)
, (11)
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where the quantities αµ are given by

αµ =
µ∑

ν=1

a(µ, ν) (12)

such that the sum in Eq. (11) reflects all possible transitions from the state x. By transposition
of P0(t + 0 | t) from the left hand side of Eq. (11), division by δτ , and taking the limit
δτ → 0, a differential equation is obtained for P0(t + τ | t),

d

dτ
P0(t + τ | t) = −αP0(t + τ | t), (13)

where α is given by

α =
M∑

µ=1

αµ (14)

and the initial condition is limτ→0 P0(t + τ | t) = 1. Equation (13) is a first-order differ-
ential equation and may be solved exactly for any time-dependent form of the transition
probabilities {C(uµ, uν)}. In the special (and typical) case where C(uµ, uν) is not time
dependent, the quiescence time is distributed exponentially [7]:

P0(t + τ | t) = exp(−ατ). (15)

However, if the system volume V or kernel K (uµ, uν) are explicitly functions of time,
the functional form of P0(t + τ | t) will differ. In conclusion, the aggregation probability
density function for time-independent kernels may be written as

P(µ, ν; τ) dτ = a(µ, ν) exp(−ατ). (16)

We now proceed to develop the basic equations for use as selection rules in our MC
algorithm. To begin, we note that MC simulation methods are based upon random sam-
pling of probability distributions. For univariate distributions, MC sampling often entails
equating a cumulative probability distribution with a random number r ∈ [0, 1] in order to
specify a value of the random variable as an outcome of a random experiment. In our case,
we recondition Eq. (16) to permit independent selection of the quiescence time and the
imminently aggregating species. An efficient conditioning for this type of distribution is [7]

P(µ, ν; τ) dτ = P2(µ, ν | τ)P1(τ ) dτ, (17)

where the probability that the quiescence time is greater than τ is

P1(τ ) dτ = α exp(−ατ) dτ, (18)

and the probability that the species involved in the imminent aggregation event are at least
µ and ν is

P2(µ, ν | τ) = a(µ, ν)

α
. (19)
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Sampling Eqs. (18) and (19) by MC, the random variables τ , µ, and ν may be specified by
the formulas

τ = 1

α
ln

(
1

r1

)
, (20)

µ−1∑
i=1

ν−1∑
j=1

a(i, j) ≤ r2α <

µ∑
i=1

ν∑
j=1

a(i, j), (21)

where the numbers r1 and r2 (r1, r2 ∈ [0, 1]) must be provided by a uniform random number
generator. The use of Eqs. (20) and (21) to select the quiescence time and imminently
aggregating species forms the basis of our MC algorithm.

3. SIMULATION ALGORITHM

Implementation of the probabilistic description of the aggregation process given in the
preceding section requires additional consideration of both the definition of the initial
species and the numerical details of computation of the random variables τ , µ, and ν. In
this section, we address both issues in greater detail.

3.1. Specification of the Initial State

In real aggregation and polymerization processes, there exist a finite set of particles of
composition ui (i ∈ [1, N ]), as defined in the previous section. Hence, the generalized
concentration density ĉ(u, t) possesses the following mathematical form [20]:

ĉ(u, t) =
N∑

i=1

δ(u − ui ). (22)

Here δ(x) is a vector form of Dirac’s delta function, such that f (0) = ∫ f (x)δ(x) dx. “Dis-
crete” aggregation processes such as chemical polymerization explicitly use discontinuous
concentration densities such as Eq. (22). For instance, a two-component aggregation pro-
cess beginning with two types of particles of compositions u1 = (u0, 0) and u2 = (0, v0)

at concentrations c1 and c2 has the initial concentration density

ĉ(u, v; 0) = 1

u0v0

(
c1δ

(
u

u0
− 1

)
δ

(
v

v0

)
+ c2δ

(
u

u0

)
δ

(
v

v0
− 1

))
. (23)

Due to the discontinuities in Eq. (23) and the fact that all aggregates must be composed
of integral amounts of each type of initial particle, the size space {u, v} ∈ R

2 is reduced
to a subspace on N

2. That is, every aggregate of composition (u, v) can be thought of as
an m, n-mer, since u = u0m and v = v0n. In the context of PBEs, solution of Eq. (2)
with the initial condition given by Eq. (23) is equivalent to solution of Eq. (1) with
c(m, n; 0) = c1δm,1 + c2δ1,n . Likewise, all concentration densities ĉ(u, 0) representing a
set of n-mers (n = (n1, n2, . . . nκ) ∈ N

κ will result in n-mer aggregates on the same com-
position space N

κ .
Consequently, specification of the initial state of a simulation of a “discrete” process

requires only that one define the populations of the species according to c(n, t). This
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process may be done as follows. The system volume V is defined by

V = X0

G(u = ∞, 0)
, (24)

where G(u = ∞, 0) is the total concentration of particles in the initial system and X0 the
total number of particles. Here, care must be taken to ensure that X0 is large enough to
ensure that most species defined by c(n, 0) are sufficiently populated. Subsequently, X0

particles must be selected from the initial concentration density c(n, 0) using the inequality

n1, j −1∑
i1=1

n2, j −1∑
i2=1

· · ·
nκ, j −1∑
iκ=1

c(i, t) ≤ r j G(u = ∞, 0) <

n1, j∑
i1=1

n2, j∑
i2=1

· · ·
nκ, j∑
iκ=1

c(i, t), (25)

where r j is a uniform random number on the interval [0, 1) for the specification of the j th
( j ∈ [1, X0]) particle such that n j = (n1, j , n2, j . . . nκ, j ). The similarity of Eqs. (25) and
(21) is a consequence of the fact that both are MC-selection rules for discrete variables,
summing discrete distribution densities until excess of a random number. Given these X0

particles, the initial species µ ∈ [1, M] are defined as particles with common compositions
nµ. The populations of these species Xµ are equal to the numbers of particles chosen by
Eq. (25) with composition nµ.

While the preceding discussion of the initial species has focused on the definition of
species in a “discrete” process, the procedure may be extended to aggregation processes
featuring particles of arbitrary size. The deterministic approach to this problem is rep-
resented by Eq. (2), where the concentration density used to characterize the state of a
two-component aggregation process is usually considered to be a continuous function
on (u, v) ∈ R

2. Strictly speaking, this is an approximation of the microphysically exact
Eq. (22), as continuity of ĉ(u, t) implies that the concentration of particles of a specific
composition u is zero. Hence, because individual species are not explicitly specified by a
continuous ĉ(u, 0), it suffices to define them such that their cumulative distribution is equal
to that of ĉ(u, 0),

G(u, t) =
u∫

0

ĉ(u, t) du

=
M∑

µ=1

Xµθ(u − uµ), (26)

where θ(x) is a vector form of Heaviside’s unit step function, defined by

θ(x) =
κ∏

i=1

θ(xi ) (27)

such that θ(x) = ∫ u
0 δ(x) dx. Although expressed in terms of species instead of particles,

Eq. (26) is a direct result of Eq. (22). Consequently, it is exact for both the initial and all
subsequent states, provided that the initial species are defined in accordance with ĉ(u, 0).

Like discrete processes, the generation of initial species for continuous processes begins
with the definition of the system volume using Eq. (24) and subsequent generation of X0

particles by MC. Due to the fact that the compositions are continuous variables in this case
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(u j ∈ R
κ), their generation requires integration over u1, j , u2, j , and so forth, until a random

number is exceeded. Symbolically, we represent this as

r j G(u = ∞, t) =
u j∫

0

ĉ(u, t) du. (28)

Because Eq. (28) is an exact MC-selection formula, the cumulative composition distribution
of the resulting particles will equal G(u, 0) = ∫ u

0 ĉ(u, 0) du to the extent that a continuous
form of ĉ(u, 0) can approximate the concentration density for a finite set of particles.

As in the discrete case, the initial species are defined using these X0 MC-generated
particles. However, the method employed for discrete processes is not the most efficient
in this case, as each particle composition chosen by Eq. (28) will be unique. As a result,
X0 species would result, with little chance that any combination of these species would
ever produce a species with a population greater than unity during the following simulation
process. Thus, while theoretically satisfactory, direct use of compositions chosen by Eq. (28)
to define initial species is numerically inefficient.

A more efficient way to define the initial species is possible by discretizing the initial
composition space into component “bins.” So long as these species obey Eq. (26), they are
as satisfactory as the aforementioned random set of species potentially specified by Eq. (28).
In the following implementation, we employ linear discretization of the composition space,
which transforms the continuous composition space into an effectively discrete one, mini-
mizing the combinatorial complexity of the composition spaces into their aggregates and,
thus, the number of species.

In order to illustrate the method, we consider here a two-component aggregation process
with an initial concentration density ĉ(u, 0) on a continuous composition space. This space
may be discretized by subdividing u = (u1, u2) into M1 × M2 intervals with abscissas

w1(k1) = 2k1 + 1

2M1 + 1
w1(M1) k1 ∈ [1,M1] ⊂ N (29)

and

w2(k2) = 2k1 + 1

2M1 + 1
w2(M2) k2 ∈ [1,M2] ⊂ N, (30)

where w1(M1) = max(u1, j ) and w2(M2) = max(u2, j ) are the maximum amounts of the
two components in any of the X0 initial particles. Each species µ with composition uµ =
(u1,µ, u2,µ) is defined by a unique set of composition intervals (k1, k2) such that

u1,µ = 1

2
(w1(k1 − 1) + w1(k1)), (31)

u2,µ = 1

2
(w2(k2 − 1) + w2(k2)), (32)

and

Xµ =
∫ w(k1,k2)

w(k1−1,k2−1)

ĉ(u, t) du

=
X0∑
j=1

[θ(w(k1, k2) − u j ) − θ(w(k1 − 1, k2 − 1) − u j )], (33)
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where w(k1, k2) = (w1(k1), w2(k2)). In summary, Eqs. (31) and (32) ascribe a single compo-
sition to the Xµ particles defined by Eq. (28) that fall in the composition range {[w1(k1 − 1),

w2(k2 − 1)], [w1(k1), w2(k2)]}. Although this example addresses the definitions of initial
species in a two-component process, the extension of Eqs. (30), (32), and (33) to systems
with more than two components is direct.

3.2. Aggregation Table

Given an initial state, the process of simulating its time evolution follows directly from
Eqs. (20) and (21) in the previous section. The MC simulation algorithm goes as follows.

(i) Compute α (14).
(ii) Choose a quiescence time and the species involved in the subsequent event according

to Eqs. (20) and (21).
(iii) Update the populations of the reactant and product species, and increment the time

by τ .
(iv) Update all a(i, j) affected by the change of those populations.
(v) Repeat.

For processes with time-independent kernels, the computationally intensive steps are
(i), (ii), and (iv), potentially requiring O(M2), O(M2), and O(M) additions, respectively.
Furthermore, upon generation of a new species, M + 1 new transition probabilities must
be created and stored for aggregation events with preexisting species, involving the com-
putation of M + 1 kernels. As M becomes large, the accounting after an aggregation event
is the rate-limiting step of the algorithm. However, the postaggregation processing can be
handled very simply and efficiently using an aggregation table (Fig. 1).

The aggregation table organizes the aggregation and species data in a way that allows fast
and efficient implementation of every step in the simulation procedure. The table consists of
a species vector specifying the state of the system and a corresponding sparse “aggregation
matrix” containing the transition probabilities from the state specified by the species vector.
The µth element of the species vector holds the composition uµ, the population Xµ, and the
partial sum αµ for the µth species. Likewise, the µth row of the aggregation matrix holds the
values of C(µ, ν) and a(µ, ν) for the events between species µ and all species ν ∈ [1, µ].
The order of the species in the species vector is determined by their birth and death.

FIG. 1. Structure of the aggregation table. Each species i in the species vector has {u1,i , u2,i , . . . uκ,i } as its
composition, Xi as its population, and αi as the sum of all a(i, j)( j ∈ [1, i]) in the corresponding row in the
aggregation matrix.
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The use of partial sums {αµ} confers dramatic improvements in efficiency in the compu-
tation of steps (i) and (ii) over the uses of Eqs. (20)–(21) alone. Because α may be computed
using Eq. (14), step (i) can be executed with only O(M) additions. Furthermore, the partial
sums simplify selection of the imminently aggregating species: instead of subtracting each
a(µ, ν) from the quantity r2α in Eq. (21), one may subtract each αi from r2α until the result
is negative. That is, the index of the first aggregating species is the lowest integer µ for which

r2α −
µ∑

i=1

αi < 0. (34)

Subsequently, the index of the second aggregating species is the lowest integer ν for which

r2α −
µ∑

i=1

αi −
ν∑

j=1

a(µ, j) < 0. (35)

Hence, the number of operations in the aggregation selection process is reduced from O(M2)

to O(M). Graphically, the choice is made by scanning down the partial sums in the table
until the µth row, and then the transition probabilities across the matrix to the νth column.
We note that although Gillespie implemented the stochastic approach in a significantly
different way, his full conditioning method [6] employs a similarly judicious use of partial
sums to reduce the number of computations involved in species selection from O(N 2) to
O(N ) when the system has N particles.

After identification of the “reactant” species, the aggregation table permits a simple
means of updating their populations and aggregation information. Here, only the µth and
νth rows of the species vector require population readjustment. Furthermore, step (iv) only
requires updating of the µth and νth rows and columns of the aggregation matrix according
to Eqs. (7) and (8). As these rows are updated, the partial sums αµ, αν , and απ may be
updated concurrently. Thus, the structure of the table obviates the need for a dependency
graph to determine which transition probabilities are affected by the immediate event.

Subsequently, the identification or creation of the product species π must be addressed.
In the deterministic formalism, the relationships between all potential reactant and product
species are implicitly defined through the PBE. As a result, discretization of the composition
space in PBEs such as Eq. (2) in the course of numerical integration has the potential
to violate the underlying conservation laws implied by the exact PBE [10, 13, 14]. For
instance, a discretized PBE might imply that two species defined by masses m1 and m2

would aggregate to form a species m4, where m4 =/ m1 + m2. In contrast, our simulation
method employs microscopic conservtion of properties or components, allowing it to avoid
these discretization problems. If species are defined by conserved quantities such as the
number of monomers or mass of each component, then product species may be defined
by an equation such as uπ = uµ + uν . Furthermore, if some of the properties stored in
u are not conserved, such as surface area in droplet coalescence, they may be computed
directly and exactly, given the pertinent physical laws pertaining to their definition. Hence,
our simulation algorithm addresses the definition of the properties of product species in an
exact and general way, enforcing conservation laws on an event-by-event basis.

The aggregation table may also be used to simplify the bookkeeping associated with the
product species π . To begin, the species vector must be searched in order to determine
whether or not there exists a species with composition uπ , requiring at most M Boolean
operations—insignificant in comparison with the floating point operations involved with
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the rest of the algorithm. If found in the species vector, the population of species π must
be incremented and the π th row and column of the aggregation matrix must be updated.
If no species with composition uπ can be found, the species vector is extended to acco-
modate a new species with composition uM = uπ and population X M = 1, along with a
corresponding row of the aggregation matrix.

Depopulated species may be removed from the aggregation table just as easily and
efficiently as new species are added. On complete consumption of some species µ, the
µth entry in the species vector and the µth row and column from the aggregation matrix
may be deleted and their memory locations deallocated without any copying of information
or disturbance of the rest of the table. This process is easily handled by dynamic allocation
of memory and the use of pointers to construct the aggregation table. In practice, we
have found the object-oriented architectures supported by C++ particularly helpful in our
implementation. Figure 2 outlines the processes of addition, removal, and updating of
aggregation events affected by the latest event.

Lastly, if the kernel K (uµ, uν) is a function of time, every C(uµ, uν) and a(µ, ν) may
need to be updated after each event. Consequently, steps (i) and (iv) will require O(M2)

operations. However, step (ii) remains an O(M) operation, since the kernels are already
updated from the preceding loop. While more computationally demanding, the relative
improvement over particle accounting algorithms increases significantly in this case, as
these become O(N 2) in this limit. For large initial numbers of particles, the difference

FIG. 2. Maintenance of the aggregation table. (a) When the population of species i is changed in the species
vector, only the i th and j th columns in the aggregation matrix must be updated. (b) If a new species is produced,
it is added to the end of the species vector and its aggregations are placed in a new row at the bottom of the
aggregation matrix. (c) If the i th species is completely consumed, its entry in the species vector is deleted, as are
the i th rows and columns in the aggregation matrix. Subsequently, the table may be condensed and the empty
entries deallocated without affecting the other entries in the table.
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in execution speed is remarkable. In the special cases where all of the kernels have the
same time dependence or the volume is a function of time, the selection criterion Eq. (19)
will be unaffected outright. In this case, the aggregation table need only contain the time-
independent parts of the kernels and partial sums {αµ}. Although Eq. (16) will not result in
an exponential distribution in these cases, the simulations of processes with these kernels
will exhibit the same efficiency as those with time-independent kernels (or volume).

3.3. Computational Efficiency

In the preceding discussion, we have shown that our species accounting algorithm requires
O(M) operations per time step, whereas particle accounting algorithms require O(N )

operations, where N is the number of particles in the simulation. Furthermore, we have
shown that species accounting reduces the storage requirements from O(N 2) to O(M2).
In order to more quantitatively compare the performance of these two approaches to MC
simulation, we now address the relationship between the number of species M and number
of particles N in a more quantitative way.

Although the exact relationship between N and M depends on the process, the maximum
number of species Mmax can be related to the total number of constituent particles (or
monomers) by consideration of monomer conservation. Consider an aggregation process in
which there are �k monomers of the kth component in the system (k ∈ [1, κ]). A detailed
balance on each component gives

�1 =
ω1∑

n1=0

n1

ω2∑
n2=0

ω3∑
n3=0

· · ·
ωκ∑

nκ=0

X (n1, n2, . . . nκ)

�2 =
ω1∑

n1=0

ω2∑
n2=0

n2

ω3∑
n3=0

· · ·
ωκ∑

nκ=0

X (n1, n2, . . . nκ)

(36)
...

�κ =
ω1∑

n1=0

ω2∑
n2=0

ω3∑
n3=0

· · ·
ωκ∑

nκ=0

nκ X (n1, n2, . . . nκ),

where ωk is the largest amount of the kth component in any species. While most of the
species in the above sums will have population zero in practice, let us consider the case
where each is singly populated, maximizing the number of potential species. In this case,
Eqs. (36) become

�1 = 1

2
ω1(ω1 + 1)

κ∏
k=2

(ωk + 1) ∼ 1

2
(ω1 + 1)

κ∏
k=1

(ωk + 1)

�2 = 1

2
ω2(ω2 + 1)

κ∏
k=1,k =/ 2

(ωk + 1) ∼ 1

2
(ω2 + 1)

κ∏
k=1

(ωk + 1)

(37)
...

�κ = 1

2
ωκ(ωκ + 1)

κ−1∏
k=1

(ωk + 1) ∼ 1

2
(ωκ + 1)

κ∏
k=1

(ωk + 1).
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Because the maximum number of species is equal to the number of possible compositions
n = (n1, n2, . . . nκ) (with the exception of n = 0), Mmax may be written in terms of {ωk}

Mmax =
(

ω1∑
n1=0

ω2∑
n2=0

· · ·
ωκ∑

nκ=0

1

)
− 1 �

κ∏
k=1

(ωi + 1). (38)

Finally, combination of Eqs. (37) and (38) gives the relationship between Mmax and the
number of particles of each component {�k}:

κ∏
i=1

�i ∼ 2−κ

κ∏
i=1

(ωi + 1)

(
κ∏

i=1

(ωi + 1)

)κ

= 2−κ

(
κ∏

i=1

(ωi + 1)

)κ+1

= 2−κ Mκ+1
max . (39)

Equation (39) gives the relationship between the maximum number of particles and the
maximum number of species. While a multicomponent particle accounting algorithm would
have at most Nmax = �1 + �2 + . . . �κ operations per time step, our algorithm requires
only O(Mmax) = O((�1�2 . . . �κ)

1/(κ+1)). For single-component aggregation processes
(κ = 1), this reduces to O(N 1/2

max)—the same as the optimized single-component MC sim-
ulation algorithms of Spouge [26] and Thorn et al. [30].

As indicated by Eq. (39), species accounting dramatically reduces both computer storage
and simulation time. For example, a simulation of 50,000 initial particles evenly distributed
into two types will require memory for about 109 kernels and 50,000 particles in the state
vector and their properties, while a species accounting approach will only require memory
for at most ∼3400 species and ∼107 kernels and transition probability densities a(uµ, uν).
In practice, the maximum number of species in a simulation is typically much less than
that given by Eq. (39), such that the computational constraints of our species accounting
implementation are significantly smaller still. However, it should be noted that with each
additional component, the number of ways of creating new species increases geometrically.
Just as molecules deplete a point in space by diffusion much faster in three dimensions than
in two or one dimensions, particles deplete their initial distribution much faster in a multi-
component aggregation than in a single-component aggregation. Consequently, continuous
multicomponent aggregation simulations based on our algorithm tend to the particle ac-
counting limit as complete aggregation is approached. When simulating tens of thousands
of particles of multiple components, one must ensure sufficient memory for storage of
potentially hundreds to thousands of species and their millions of aggregation kernels.

4. ILLUSTRATIVE EXAMPLES

In order to demonstrate the feasibility and robustness of the algorithm, we now present
some results of MC simulations of two-component processes for a few representative ker-
nels. In the course of illustrating the algorithm’s implementation, our results also explicitly
demonstrate the differences between the stochastic and deterministic approaches to aggrega-
tion kinetics. We begin by considering three classes of kernels that permit analytical solution



432 LAURENZI, BARTELS, AND DIAMOND

of Eq. (1). Subsequently, we present numerical results for two continuous two-component
aggregation processes.

4.1. Discrete Processes

In order to represent some representative mathematical behaviors exhibited by aggrega-
tion kernels, let us consider the three two-component aggregation kernels:

K (m, n | m ′, n′) = β β = const, (40)

K (m, n | m ′, n′) = B(m + n + m ′ + n′) B = const, (41)

and

K (m, n | m ′, n′) = b(m + n)(m ′ + n′) b = const. (42)

Defining an index of homogeneity λ by the formula

K (su, sv | su′, sv′) = sλK (u, v | u′, v′), (43)

these kernels represent processes with progressively increasing degrees of dependence
on the compositions of the aggregating particles. The first of these is insentivive (λ =
0), the second is intermediate (λ = 1), and the third possesses the strongest composition
dependence (λ = 2). For each homogeneity index, unique behaviors are observed in both
the deterministic and stochastic approaches to aggregation kinetics. Moreover, simulation
of processes with these kernels permits a direct comparison between the two approaches.
Lushnikov has shown that if a two-component kernel is dependent only on the total numbers
of monomers in each “reacting” aggregate

K (m, n | m ′, n′) = K (m + n, m ′ + n′) (44)

and the initial state of the system features monomers only, as in Eq. (23), then the compo-
sition distribution may be expressed as [16]

c(m, n; t) =
(

m

n

)(
c1

c0

)m(c2

c0

)n

c(m + n, t) c0 = c1 + c2. (45)

In Eq. (45), c(m + n, t) is the concentration of particles composed of (m + n) monomers
of either type. It may be determined by solution of Smoluchowski’s equation [25],

∂c(i, t)

∂t
= 1

2

i−1∑
j=1

K ( j, i − j)c( j, t)c(i − j, t) −
∞∑
j=1

K (i, j)c(i, t)c( j, t), (46)

using the initial condition c(i, 0) = c0δi,1, where K (i, j) is the form of the kernel on the
right hand side of Eq. (44). Like Eqs. (1) and (2), Smoluchowski’s has few analytical
solutions. However, given the initial condition c(i, 0) = c0δi,1, solutions are known for
the constant, sum, and product kernels K (i, j) = β, B(i + j), and b(i × j) [8, 18, 25]
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TABLE I

Analytical Solutions of Smoluchowski’s Equation

K (i, j) c (i, t)

β 4c0
(T )i−1

(T + 2)i+1
T = βc0t

B(i + j) c0(1 − φ)
(iφ)i−1

�(i + 1)
e−iφ φ = 1 − exp(−Bc0t)

b(i × j)




c0
(iT )i−1

�(i + 1)
e−iT , T ≤ 1

c0

T

(i)i−1

�(i + 1)
e−i , T < 1

T = bc0t

Note. Solutions for initial condition c (i, 0) = c0δi,1. Parameters β, B, and
b are constants.

(Table I). Consequently, analytical solution of Eq. (1) is possible with the kernels given by
Eqs. (40)–(42).

In order to compare the results of our algorithm with these analytical solutions to Eq. (1),
simulations of processes with the two-component constant, sum, and product kernels were
conducted with c1 = 10,000, c2 = 20,000, and V = 1—conditions that sufficiently describe
an “infinite” system. In Figs. 3–5 we show results from individual simulation runs along
with the analytical size distributions given by Eq. (45) for all three kernels. Despite the
fact that PBEs describe the time evolution of the average results of the process while MC
simulations represent a single experiment, the agreement between individual MC-simulation
results and analytical solutions of the PBE is excellent, with most of the differences resulting
from stochastic fluctuations when c(m, n; t) ∼ O(1/V ). In accordance with the fact that
PBEs describe the average behavior of a process, differences between the averages of
several simulations and the analytical solutions of the PBEs were negligible. Consequently,
the average MC results predicted c(m, n; t) to a precision greater than V −1. Execution
of multiple simulations also provides a means of determining the innate fluctuation of
aggregation processes. Just as the average concentration of m, n-mers in solution at time t
can be expressed as c(m, n; t) � 〈Xm,n〉/V , so too can other statistics, such as the standard
deviation.

In addition to reproducing the composition distributions c(m, n; t), the simulation results
also preserved all of their moments, defined by

Mi, j (t) =
∞∑

m=0

∞∑
n=0

mi n j c(m, n; t). (47)

In Figs. 6–8 we show some of the moments resulting from both the analytical solutions of
the PBE and the MC simulation results. In general, the moments of the results of the PBE
and MC simulations for the sum and constant kernels agree very well until the physical
limit of complete aggregation. However, there are subtle differences in the behaviors of
the moments from the deterministic and stochastic approaches in this limit. In real and
MC simulated systems, a single particle containing all of the mass of the initial particles is
formed in the limit of complete aggregation. At this point, all moments (except i = j = 0)
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FIG. 3. Normalized discrete particle size distributions c(m, n; t)/c0 resulting from a constant kernel at
(a) T = 1.0, (b) T = 2.0, and (c) T = 5.0, where T = βc0t . Distributions from the analytical solution of the
PBE are given on the left, and those from MC simulation are given on the right. Simulations were conducted with
c1 = 10,000, c2 = 20,000, and V = β = 1.0.
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FIG. 4. Normalized discrete particle size distributions c(m, n; t)/c0 resulting from a sum kernel at (a)φ = 0.14,
(b) φ = 0.24, and (c) φ = 0.5, where φ = 1 − exp(−Bc0t). Distributions from the analytical solution of the PBE
are given on the left, and those from MC simulation are given on the right. Simulations were conducted with
c1 = 10,000, c2 = 20,000, and V = B = 1.0.
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FIG. 5. Normalized discrete particle size distributions c(m, n; t)/c0 resulting from a product kernel at
(a) T = 0.21, (b) T = 0.39, and (c) T = 0.81, where T = bc0t . Distributions from the analytical solution of the
PBE are given on the left, and those from MC simulation are given on the right. Simulations were conducted with
c1 = 10,000, c2 = 20,000, and V = b = 1.0.
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FIG. 6. Normalized zeroth and second moments for the two-component constant kernel. Lines are results
from the PBE, and points are results from MC simulation.

exhibit the following limiting behavior:

lim
t→∞

Mi, j (t)

Mi
1,0 M j

0,1

= 1; i + j > 0. (48)

As shown in Figs. 6–8 and Table II, the moments of the composition distributions originat-
ing from the analytical solutions of the PBE do not have the limiting behavior described
by Eq. (48), but exceed unity at finite times. Moreover, the solution to the PBE with the
two-component product kernel features unrealistic behaviors such as failure to conserve
mass (Figs. 8b and 8c) and divergence of the second moments (Figs. 8d–8f). The reasons
for these behaviors have been detailed elsewhere [2, 5, 6, 16, 20, 21, 28], and result from the
fact that deterministic rate laws are valid only for “infinite systems,” that is, systems with
“large” numbers of particles in “large” volumes. While this thermodynamic limit assump-
tion is sufficient for most kinetic processes, irreversible aggregation and polymerization
represent special cases in that they may start large but consume particles until a single
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FIG. 7. Normalized zeroth and second moments for the two-component sum kernel. Lines are results from
the PBE, and points are results from MC simulation (T = Bc0t).

macroparticle remains. Consequently, the neglect of small population corrections in PBEs
causes unrealistic behavior as the total population of particles becomes small. Because our
MC simulation method exactly employs the stochastic approach without approximation, it
can predict the behavior of aggregation processes exactly at all times.

In the special case of the product kernel, the moments of the MC and PBE results have
significantly different behaviors at the gel transition—a point in the aggregation process at
which a “macroscopic” aggregate forms. Ziff’s conjecture states that solutions of single-
component PBEs with kernels with λ > 1 and monodisperse initial conditions exhibit the
following properties at what is known as the gel point, tg [33]:

M1(t > tg) < M1(0), (49)

Mi (t ≥ tg) = ∞ i = 2, 3, . . . (50)

Equations (49) and (50) represent violation of mass conservation and formation of particles
of infinite size, respectively. Mathematically, this behavior results from a divergence of the
series defined by Eq. (47), outside of its radius of convergence [0, tg]. For the constant and
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FIG. 8. Normalized zeroth and second moments for the two-component product kernel. Lines are results from
the PBE, and points are results from MC simulation.
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TABLE II

Moments of the Composition Distributions from Lushnikov’s Equation with Two-Component

Constant, Sum, and Product Kernels

Constant kernel Sum kernel Product kernel

M0,0
2c0

T + 2
c0(1 − φ)




c0

(
1 − 1

2
T
)

, T ≤ 1

1

2
c0T, T > 1

M1,0 c1 c2

{
c1, T ≤ 1
c1

T
, T > 1

M0,1 c1 c2

{
c2, T ≤ 1
c2

T
, T > 1

M1,1 c0
c2

c0

c1

c0
T c0

c2

c0

c1

c0

(2 − φ)φ

(1 − φ)2
c0

c2

c0

c1

c0

T

1 − T
, T ≤ 1

M2,0 c1

(
1 + c1

c0
T

)
c1

(
1 + c1

c0

(2 − φ)φ

(1 − φ)2

)
c1

(
1 + c1

c0

T

1 − T

)
, T ≤ 1

M0,2 c2

(
1 + c2

c0
T

)
c2

(
1 + c2

c0

(2 − φ)φ

(1 − φ)2

)
c2

(
1 + c2

c0

T

1 − T

)
, T ≤ 1

Note. Solutions for initial condition c(m, n; 0) = c1δm,1 + c2δ1,n . c0 = c1 + c2.

sum kernels, all nonzero moments converge on [0, ∞]. On the other hand, the two component
product kernel has a gel point at tg = 1/bc0 (Tg = 1). As Figs. 8d–8f show, MC simulation
successfully reproduces the higher moments for this gelling kernel throughout the radius
of convergence of the PBE results. Subsequently, strikingly rapid yet finite increases of the
second moments M0,2, M1,1, and M2,0 are observed at the gel point tg , reflecting the fact that
a real system—lacking an infinite number of particles—does not obey Eqs. (49) and (50).
Moreover, a single particle of runaway size is observed in the species vector at this point,
tantamount to an “infinite gel” of infinitesimal concentration predicted by the deterministic
formalism. For t > tg , MC simulation provides new insight into the postgelation period of
the process not possible with a PBE. The limiting behavior of Eq. (48) is observed over a
decade of dimensionless time, and both components are fully conserved.

As noted in the previous section, the performance of the algorithm depends on the number
of species in the state vector, which varies from kernel to kernel. In Fig. 9 we show the max-
imum number of species formed during discrete simulations of various kernels. In addition
to the kernels given by Eqs. (40)–(42), we have included the behavior of the orthokinetic
kernel (K (m, n | m ′, n′) ∝ ((m + n)1/3 + (m ′ + n′)1/3)3) and the perikinetic kernel, which
is discussed at length in the following subsection. As expected, a power-law relationship
between Mmax and the quantity �1�2 is observed with an exponent approximately equal to
1/3, although Eq. (39) gives a more conservative estimate of the coefficient. An unexpected
relationship between the maximum number of species and the index of homogeneity λ

was observed as well. Noting that the constant and perikinetic kernels (λ = 0) share the
same relationship between Mmax and �1�2 as do the sum and orthokinetic kernels (λ = 1),
the results suggest that as λ increases, so too does Mmax. Qualitatively, the λ-dependence
is a consequence of the capacity of the kernel to direct the aggregation process. Because
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FIG. 9. Maximal number of species possible at one time in a two-component aggregation process initially
given �1 monomers of one type and �2 of the other. The theoretical limit is given by Eq. 39.

the perikinetic and constant kernels (λ = 0) are insensitive to the sizes of the aggregat-
ing species, all species are more or less equally prone to aggregate with each other via
these kernels. Consequently, this size insensitivity can cause an explosion of singly pop-
ulated species. In contrast, the product kernel (λ = 2) strongly favors aggregations of the
largest particles—directing the formation of certain species more often than others. The
sum and orthokinetic kernels (λ = 1) fall between these extremes. Because Mmax relates
directly to the slowest step of the simulation procedure, it follows that the speed of the
algorithm increases with λ. Generally speaking, the effects of λ are inconsequential for
single-component aggregation, which may be simulated until complete aggregation almost
instantaneously for all kernels. This is a consequence of the fact that aggregation products
have a smaller species space to occupy, and multiple paths to the same product species are
more probable than for multicomponent aggregation.

Finally, as a consequence of species accounting and the aggregation table, the execu-
tion speed of the algorithm is competitive with many of the numerical methods used for
integration of the PBEs. Typically, simulations of two-component processes with tens of
thousands of initial particles required only a few seconds to complete, regardless of the ker-
nel. For all intensive purposes, complete simulations of single-component processes were
instantaneous. Much of this is attributable to the aggregation table and its use of partial
sums of α. In a comparison of two MC implementations of a two-component continuous
aggregation process executed on a 1.2-GHz PC, one using an aggregation table and one
without, simulation times for the unoptimized code required 30 min, while the optimized
code required only 7s.

4.2. Continuous Processes

Typically, transport-limited aggregation processes require a “continuous” treatment of the
composition space, as particles are not “polymers” in the chemical sense. Among the many
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kernels for transport-limited processes, one of the most frequently used is the perikinetic
kernel describing aggregation that is limited by Brownian motion:

K (uµ, uν) = εa
2kB�

3η

(
1

u1/3
µ

+ 1

u1/3
ν

)(
u1/3

µ + u1/3
ν

)
. (51)

In Eq. (51), uµ and uν are the total volumes of species µ and ν, kB is Boltzmann’s constant,
� is the temperature, and η is the viscosity of the suspending medium. The quantity εa is
the probability that the two particles adhere upon collision. Unfortunately, no exact solution
exists for PBEs with this kernel, although approximate or numerical solutions suffice for
many applications.

In order to avoid the size dependence of Eq. (51), Smoluchowski [25] observed that it
could be approximated by another homogeneous kernel with λ = 0,

K (uµ, uν) = εa
8kB�

3η
. (52)

Like Eq. (40), this is a constant kernel withβ = εa8kB�/3η. Currently, this is the only kernel
for which analytical solution to Lushnikov’s equation is possible with a continuous initial
distribution density [16]. For an initial distribution with two types of pure, exponentially
distributed particles

ĉ(u, v; 0) = c1λ1e−λ1uλ2δ(λ2v) + c2λ2e−λ2vλ1δ(λ1u), (53)

we have determined the cumulative size distribution G(u, v; t) resulting from exact solution
of Eq. (2) (see Appendix):

G(u, v; t) = 4c0

(2 + T )2

{
x1

θ1

(
1 − e−θ1λ1u

)+ x2

θ2

(
1 − e−θ2λ2v

)

+ x1

θ1

∞∑
j=0

((
T

2 + T

)2 x2x1

θ2θ1

) j+1

P( j + 2, θ1λ1u)P( j + 1, θ2λ2v)

+ x2

θ2

∞∑
j=0

((
T

2 + T

)2 x2x1

θ2θ1

) j+1

P( j + 1, θ1λ1u)P( j + 2, θ2λ2v)

+
(

4 + 2T

T

) ∞∑
j=0

((
T

2 + T

)2 x2x1

θ2θ1

) j+1

P( j+1, θ1λ1u)P( j+1, θ2λ2v)

}
.

(54)

In Eq. (54), c0 = c1 + c2 is the initial concentration of particles, T = βc0t is a dimensionless
time scale, P(a, x) is the incomplete gamma function [1], and xi and θi are given by

xi = ci

c0
, i = 1, 2, (55)

and

θi = 1 −
(

T

2 + T

)
xi , i = 1, 2. (56)
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FIG. 10. Normalized, MC-generated cumulative particle size distributions G(u, v; T )/G(∞, ∞; 0) at di-
mensionless times (a) T = 3.8 × 103, (b) T = 1.3 × 104, (c) T = 4.7 × 104, and (d) T = 1.6 × 105 (T = βc0t)
for a constant kernel.

Results of simulations with the parameters c1 = 10000, c2 = 5000, λ1 = 0.25, λ2 =
0.125, β = 1, and V = 1 (with discretization M1 = M2 = 50) are given in Fig. 10. For
all choices of parameters for the initial distribution, the analytical solution of Lushnikov’s
equation and results of MC simulations were virtually indistinguishable from each other.
Kolmogorov–Smirnov significance testing [19] strongly indicated that the distributions
resulting from Lushnikov’s equation and individual MC simulations were not statistically
different, with P-values ranging from 0.7 to 1 at each time point. Despite the natural
variation from one simulation to the next, we found that averaging the results of several MC
simulations was unnecessary as long as the initial number of particles in the simulation was
large and the discretization sufficiently fine. In part, this is due to the summation over the
species in Eq. (26), which acts as a type of species averaging. If the concentration density
ĉ(u, v; t) is desired, several sets of simulation results must be performed so as to make the
surface G(u, v; t) conducive to numerical differentiation.
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In addition to the simulations of a process with a constant kernel, we have also computed
the time evolution of a Brownian aggregation using Eq. (51). For purposes of demonstration,
we include a composition-dependent sticking probability εa(yµ, yν) in order to introduce
composition dependence into the size-insensitive kernel. Consider the sticking probabilities
between pure particles of two different components ε1,1, ε2,2, and ε1,2. If adhesion between
two aggregates is mediated by a single point of contact, the equation that can be used to
describe the heterotypic sticking probability is

εa(uµ, uν) = (yµyν)ε1,1 + ((1 − yµ)yν + yµ(1 − yν))ε1,2 + (1 − yµ)(1 − yν)ε2,2, (57)

where yµ and (1 − yµ) are the volumetric fractions of the first and second components in

FIG. 11. Normalized cumulative particle size distributions G(u, v; T )/G(∞, ∞; 0) at dimensionless times
(a) t∗ = 0.197, (b) t∗ = 0.441, (c) t∗ = 0.989, and (d) t∗ = 2.21, where t∗ = c0(2k�/3η)t . Simulations represent
Brownian aggregation of nanoscopic particles in water at � = 293 K with a particle volume fraction of approxi-
mately 1%.
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species µ. We note that with increased information of aggregate morphology, such as the
distribution of the numbers of points of contact, more complex forms of εa are possible.
Using this model of the composition dependence of the perikinetic kernel, we conducted
simulations of 15,000 particles in a volume of V = 2.30 × 10−8 ml. As in the previous
example, the initial concentration density was chosen to reflect the aggregation of two
initially pure sets of particles with unique size distributions, in this case gamma,

ĉ(u, v; 0) = c1
λ1(λ1u)σ1−1e−λ1u

�(σ1)
λ2δ(λ2v) + c2

λ2(λ2v)σ2−1e−λ2v

�(σ2)
λ1δ(λ1u), (58)

with σ1 = 2.0, σ2 = 6.0, λ1 = 4.78 × 10−10 ml−1, and λ2 = 1.59 × 10−10 ml−1. The re-
spective concentrations of the initial particles were c1 = 4.34 × 1011 particles/ml and
c2 = 2.17 × 1011 particles/ml, and the composition spaces were discretized such thatM1 =
M2 = 50. Furthermore, we assumed the suspending medium to be water at � = 293 K,
such that (2kB�/3η) = 2.70 × 10−9 ml/s. The sticking probabilities were taken as ε1,1 =
0.8, ε2,2 = 0.1, and ε1,2 = 0.6, representing a situation whereby heterotypic aggregation
is preferred for the second component, but not necessarily the first. We show the results
of the simulation in Fig. 11. The relative asymptotic values of the cumulative distribution
as u → 0 and v → 0 reflect the disparity of the two initial particle concentrations, and as
time increases, the consumption of the pure particles is reflected in their relative decrease.
Figure 11a shows that even after about 20% of the initial particles have aggregated, the
relative amounts of pure particles are virtually unchanged. Subsequently, the relative pop-
ulations of the pure particles equalize as the distribution becomes more symmetric. This
behavior contrasts with that of the constant kernel (Fig. 10), which more or less maintains
the population ratio of pure particles until complete aggregation. The differences between
the two kernels are functions of both the promotion of size-disproportionate events by
Eq. (51) and the favoring of aggregation of type 1 particles by Eq. (58).

5. DISCUSSION

By treatment of multicomponent aggregation processes akin to copolymerization, we
have proposed an efficient and exact MC simulation algorithm based upon Gillespie’s im-
plementation of the stochastic approach to chemical kinetics [7]. In addition to providing a
means of simulating aggregation and polymerization processes with any number of compo-
nents in a robust manner, the algorithm can reproduce the results of multicomponent PBEs
within the radii of convergence of their solutions and extends these results to times where
the PBE approach is potentially unreliable. Moreover, MC simulation permits statistical
analyses of the inherent statistical fluctuations of multicomponent aggregation processes
not possible using deterministic techniques.

As discussed in Section 2, our MC algorithm is microphysically equivalent to the exact
MC algorithms of Gillespie [6] and Shah et al. [23] for particle coalescence. We denote
these algorithms as particle accounting, as they keep track of each particle in the simulation.
By using a chemical interpretation to define the state of an aggregating system in terms of
“aggregate species,” the bookkeeping of the stochastic simulation may be significantly
improved. While particle accounting algorithms require O(�1 + �2 + . . . �κ) numerical
operations per time step where {�k} are the total amounts of each component k ∈ [1, κ], our
species accounting algorithm requires only O((�1�2 . . . �κ)

1/(κ+1)) numerical operations
per time step. Moreover, the storage requirements of our species accounting algorithm are
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at most O((�1�2 . . . �κ)
2/(κ+1)), while particle accounting algorithms require O((�1 +

�2 + . . . �κ)
2). For kernels that are not homogeneous with respect to time, the number

of operations per time step squares for both implementations, bringing about even more
dramatic relative improvements for our species accounting algorithm.

The algorithm itself follows. A set of initial aggregate species are defined as types of
particles with specific compositions. Subsequently, the time until the next aggregation event
and the species involved are selected by MC using a microphysically exact “aggregation
probability density function.” After updating the populations of the involved species and the
time, the process is repeated until some predefined time or event. By use of this procedure,
aggregation processes governed by any kernel can be exactly simulated from any initial
condition all the way through complete aggregation.

The bookkeeping of the algorithm can be dramatically simplified by use of an “ag-
gregation table,” which optimizes the bookkeeping of species and their probabilities of
aggregation with each other. In addition to simplifying the creation, update, and destruction
of species in the state vector, the aggregation table simplifies the use and update of the
partial sums {αµ} used in the selection of aggregating species and the quiescence times. In
practice, this translates to hundredfold increases in execution speed over implementations
without the use of the partial sums. As a consequence, most simulations of discrete pro-
cesses with tens of thousands of particles require at most a few seconds of computation to
reach complete aggregation, whereas continuous processes can take longer. These ultrafast
run times facilitate interactive deconvolution algorithms for the determination of kernels
from size-composition distribution data sets.

In the study of some representative aggregation processes, we showed that the stochastic
and deterministic formalisms are equivalent in the limit of large initial populations and
times preceding complete aggregation. For processes with kernels featuring a gel transition,
the results of MC simulation and the PBE agree within the interval t ∈ [0, tg]. For many
applications within these time limits, numerical integration methods for PBEs [10, 11, 13,
14] or their moments [32] may be sufficient alternatives. However, MC implementation of
the stochastic approach is the only means of exactly predicting the complete time evolution of
all multicomponent aggregation processes. In conclusion, owing to the speed and exactness
of this approach, we believe it to have many useful applications to a broad range of physically
relevant problems.

APPENDIX

Lushnikov’s solution to Eq. (5) for the constant kernel is expressed in terms of the double
Laplace transform of ĉ(u, v; T ), defined by

φ(p, q; T ) = 1

c0

∞∫
0

∞∫
0

e−pu−qv ĉ(u, v; T ) du dv, (A.1)

where T = βc0t and c0 = ∫∞
0

∫∞
0 ĉ(u, v; 0) du dv. The Laplace space solution to Eq. 2

is [16]

φ(p, q; T ) = 4

2 + T

φ(p, q; 0)

2 + T − T φ(p, q; 0)
. (A.2)
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This solution may be inverted given φ(p, q; 0), which follows directly from Eq. (53) as

φ(p, q; 0) = x1λ1
1

p + λ1
+ x2λ2

1

p + λ2
, (A.3)

where xi = ci/c0. Substituting (A.3) into (A.2) yields, after some rearrangement, the ex-
pression

φ(p, q; T ) = x2λ2
(

2
2 + T

)2

(q + λ2v2)


1 +

(
(q + λ2)x1λ1

x2λ2
+ ( T

2 + T

)
(q + λ2)x1λ1

(q + λ2v2)

)
p +

((
T

2 + T

)
(q + λ2)x1λ1

(q + λ2v2)

)

, (A.4)

where we have definedv2 = 1 − ( T
2 + T )x2. Finally, using standard Laplace inverse transform

tables [1] and the relationship

1

2π i

∮
est e

k
s ds = 1

2π i

∮
est

(
1 +

∞∑
j=1

(k/s) j

j!

)
ds

= δ(t) + k
∞∑
j=0

1

j!

(kt) j

( j + 1)!

= δ(t) + k
I1(2

√
kt)√

kt
, (A.5)

the two-component concentration density ĉ(u, v; T ) may be expressed as

ĉ(u, v; T ) = 4c0λ1λ2

(2 + T )2

{
x1δ(λ2v)e−λ1v1u + x2δ(λ1u)e−λ2v2v

+ 2x1x2 I0

(
2

(
t

2 + T

)√
(x1λ1u)(x2λ2v)

)
e−λ1v1u−λ2v2v

+
[

x1x2e−λ1v1u−λ2v2v

(√
x1λ1u

x2λ2v
+
√

x2λ2v

x1λ1u

)

× I1

(
2

(
T

2 + T

)√
(x1λ1u)(x2λ2v)

)]}
, (A.6)

where v1 = 1 − ( T
2 + T )x1 and In(x) is the modified Bessel function [1].

In order to compute the cumulative composition distribution G(u, v; t), the identity

Iν(2
√

z)

(
√

z)ν
�(ν + 1) = (ν − 1)!

∞∑
j=0

1

(ν + j)!

z j

j!
(A.7)

may be used, turning (A.6), after some rearrangement, into

ĉ(u, v; T ) = 4c0λ1λ2

(2 + T )2

{
x1δ(λ2v)e−λ1v1u + x2δ(λ1u)e−λ2v2v

+
∞∑
j=0

((
T

2 + T

)2

x1x2

) j+1

e−λ1v1u−λ2v2v

[
2

(
2 + T

T

)
(λ1u) j

j!

(λ2v) j

j!

+ x1
(λ2v) j

j!

(λ1u) j+1

( j + 1)!
+ x2

(λ2v) j+1

( j + 1)!

(λ1u) j

j!

]}
. (A.8)
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Equation (54) follows by double integration of (A.8) using the definition of the incomplete
gamma function

P(a, x) = 1

�(a)

x∫
0

xa−1e−x dx . (A.9)
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